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Abstract. A new approach is proposed for optimizing a polynomial fractional function under
polynomial constraints, or more generally, a synomial fractional function under synomial con-
straints. The approach is based on reformulating the problem as the optimization of an increasing
function under monotonic constraints.

Key words: fractional programming, global optimization, minimizing a sum of many linear
fractions, monotonic optimization, polyblock approximation method, polynomial, synomial.

1. Introduction

We shall be concerned with the following polynomial fractional programming
problem

max { h(x)

g(x)

where r=(ry,...,r,) with r,>0 i=1,...,n, [0,r]={xeR"| 0<x;<r; (i=1,
...,n)} and h,g,c;: R"— R are polynomials of any degree such that g(x) >a>0
for all xe[0,r]. Often ¢;(x) are affine functions, so that the constraint set is
a polytope. Since the problem remains essentially unchanged when we replace
h(x)/g(x) with [h(x)+Mg(x)]/g(x)=[h(x)/g(x)]+M where M is a constant

so large that h(x)+Mg(x)>0 Vxe[0,r], without loss of generality we can
assume that

gx)za>0, h(x)>0 Vxel0,r]. (D

¢;(x)<0 (i=1,...,m), xe[O,r]} (FP)

Also, the seemingly more general case when some of the functions f(x)="h(x)/
g(x), ¢;(x) are sums of fractions with positive denominators for 0 < x < r can in
an obvious way be cast into the above formulation. In particular, by writing a sum
of linear fractions as a single polynomial fraction, the problem of maximizing
(or minimizing) a sum of linear fractions [5-8], etc., which is encountered in
various applications such as: multi-stage stochastic shipping, cluster analysis,
multi-objective bond portfolio, etc., can be considered and studied as a special
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polynomial fractional programming problem. Thus (FP) includes in fact a very
broad class of problems of theoretical and practical interest.

In the special case when g, & are both convex quadratic functions, or both d.c.
functions, the problem was studied by Gotoh and Konno [7] and J. Shi [20],
respectively. If A(x) is convex, g(x) is concave the problem is a quasiconvex
maximization; if 4(x) is concave, g(x) is convex, the problem is a quasiconcave
maximization. Several algorithms are available for solving the problem in these
cases. However, when both i(x) and g(x) are convex as considered in [7], the
problem is neither convex nor concave, hence is much more difficult. Gotoh and
Konno proposed in [7] an efficient method for solving the problem under these
assumptions. For a review of fractional programming and its applications up to
1995, see [16] and also the recent book [22].

When g(x)=1 (FP) reduces to the general polynomial programming problem
earlier investigated by Shor [21], Sherali and Tuncbilek [17-19] and some
other authors [2, 28]. Shor reduces general polynomial programs to quadratic
ones, whereas Sherali and Tuncbilek use a technique called Reformulation-
Convexification (R-C) to solve the problem by branch and bound, where bounds
are computed through reformulation and convex relaxation. Most recently,
Lasserre [13, 14] developed a class of positive semidefinite relaxations for poly-
nomial programming with the property that any polynomial program can be
approximated as closely as desired by a semidefinite program of this class. A
common feature of all these methods is that they require introducing a huge num-
ber of additional variables even for problems of small size involving polynomials
of high degree.

Since any polynomial is a d.c. function, i.e. a function that can be represented
as a difference of two convex functions, a polynomial programming problem, or
more generally, a polynomial fractional programming problem is a d.c. optimiza-
tion problem, and hence, can in principle be solved by d.c. optimization methods
(see e.g. [23]). So far, though, very little experience has been gathered on solving
polynomial fractional programming problems by d.c. optimization methods.

The purpose of this paper is to present a new approach to polynomial fractional
programming (FP) based on the recently developed theory of monotonic opti-
mization [25]. An important feature of this approach is its weak sensitivity with
respect to the highest degree of the polynomials involved, which is in contrast
with most existing methods for polynomial programming. Furthermore, without
any additional manipulation, this approach applies as well to synomial fractional
programming, i.e. to problems (FP) when £, g, ¢; are synomials (a synomial is a
polynomial with positive rational, rather than simply integral, exponents).

In Section 2 we will first show that any fractional programming problem (FP) in
R" can be converted to a polynomial programming problem in R"*!. Furthermore,
as is well known from global optimization theory, the key subproblem for a
global optimization method is to transcend a given incumbent value ¢, i.e. to find,
for this value ¢, a feasible solution to (FP) such that h(x)/g(x)> ¢, if there is
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one. It turns out that this subproblem is a polynomial program in R”, so that
solving (FP) can also be reduced to solving an adaptively generated sequence
of polynomial programs in R". Since in global optimization the cost of an extra
dimension quickly increases with 7, it can be expected and it has been indeed
confirmed by computational experience that, as n increases, the latter approach
may outperform the former.

In Section 3, after introducing some basic concepts of monotonic optimization
we will show how a polynomial programming problem can in turn be written as
a monotonic optimization problem, i.e. an optimization problem involving only
increasing functions in the objective and the constraints.

Next, in Section 4 we discuss an outer approximation method called polyblock
approximation for solving the transformed polynomial optimization problem. The
name comes from the fact that the algorithm is similar to the classical outer
approximation method for convex maximization but uses ‘polyblocks’ instead
of polyhedrons to approximate the feasible set. Although this polyblock outer
approximation has several advantages over the classical polyhedral outer approxi-
mation, it cannot overcome all drawbacks inherent to outer approximation and,
consequently, may not be efficient for solving large scale problems. Therefore,
in Section 5 we propose a branch and bound procedure which usually performs
better than outer approximation methods especially in high dimension. Moreover,
by using a new efficient method for computing bounds, this branch and bound
algorithm substantially improves upon the one originally proposed in [25].

Finally Section 7 is devoted to some numerical illustrative examples. Despite
their relative simplicity these examples are by no means trivial. The weak sen-
sitivity of the method with respect to the highest degree of the polynomials
involved allows it to be applied to advantage to generalized multiplicative pro-
grams, such as the optimization of sums or products of linear fractions, especially
when the number of variables is small compared to the number of sums or prod-
ucts. This fact will be illustrated by a numerical example (Example 5) featuring
the maximization of a sum of many ratios. Also two examples (Examples 6 and 7)
will illustrate the application of the method to synomial fractional programming.
Hopefully, these examples could help to convince the reader of the viability and
the interest of this approach which, to our knowledge, is the first attempt of its
kind to attack this class of difficult problems.

2. Reduction to Polynomial Programming

A polynomial programming problem is obviously a special case of (FP) in which
g(x)=1. It turns out that conversely, any fractional program can be reduced to a
polynomial program according to the following proposition.

PROPOSITION 1. The problem (FP) is equivalent to the polynomial optimization
problem
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maximize yh(x)
s.t. vg(x)<1, ¢;(x)<0 (i=1,...,m), (PFP)
0<x<r, 0<y</a.

Proof. 1f (x,y) solve (PFP) then one must have y=1/g(x) so yh(x)=h(x)/
g(x). For any feasible solution x of (FP) the constraints of (PFP) are satisfied by
setting y=1/g(x), so yh(x)<yh(x), i.e. h(x)/g(x)<h(x)/g(x). Conversely,
if (x) solves (FP) then for any feasible solution (x,y) of (PFP) we have yh(x)
<h(x)/g(x) <h(x)/g(x)=yh(x) with y=1/g(X). 0

Thus, a fractional program in R” can be solved through solving an equivalent
polynomial program in R"!,

On the other hand, it is well known (see [9, 11] or [23]) that the key for
solving a global optimization problem is to transcend any incumbent value ¢
of the objective function. In the case of (FP) this subproblem consists in the
following:

(*) Given a value t, find a feasible solution x to (FP) such that h(x)/g(x) >t
or else establish that no such solution exists.

If t="h(x)/g(x) for some feasible solution x then solving (x) for =7 amounts
to checking whether x is optimal and, if it is not, finding a better feasible solution.

In general we must be content with an approximate optimal value. A number
t is said to be an e-optimal value of (FP) if |t* — | < et (so that the relative error
made by accepting 7 as optimal is at most £). A vector x€ X is said to be an
g-optimal solution of (FP) if t=h(x)/g(X) is e-optimal, i.e. if |t* — h(x)/g(X)| <
eh(x)/g(x).

The next proposition shows that solving () reduces to solving a polynomial
program in R”. For any fixed 7 let F(¢) denote the optimal value of the problem

max{h(x)—rg(x)|c;(x)<0 (i=1,...,m), 0<x<r}. (PP(2))

(with the usual convention F(f)=—oo in case of infeasibility). Let X be the
feasible set of this problem, i.e. also the feasible set of (FP).

PROPOSITION 2. (i) F(t) is a convex decreasing function.

(ii) Let x' be an optimal solution of problem PP(t). Then h(x")/g(x") >t if and
only if F(t)>0 and x' is an optimal solution of (FP) if and only if F(t)=0.

(iii) If |F(t)| < eat then t is an g-optimal value and any x € X such that |h(x) —
tg(x)| < eat is an 2e-optimal solution of (FP).

Proof. (i) and (ii) are well known results [1, 10]. Let us prove (iii). If F(7)
<eart then h(x)—r1g(x)<F(t)<eat YxeX, hence, h(x)/g(x)—t<eat/g(x)
<et Vxe X (because 0 <a<g(x)). This implies that t*—¢<et. On the other
hand, since F(7) > —eat there exists x € X such that h(x)—rg(x) > —eat, hence
h(x)/g(x)—t>—ceat/g(x)>—et, and consequently, t*—t>—gt. Thus, —et
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<t*—t<et, proving that ¢ is an e-optimal value. Furthermore, this implies
the existence of a xe€ X such that |h(x)/g(x)—t|<e, hence |t*—h(x)/g(x)|
|t —t|+|t—h(x)/tg(x)| < 2e. O

Thus, the optimal value ¢* of (FP) is merely the zero of a decreasing convex
function, F(¢). If an algorithm is available for solving PP(¢), i.e. for finding F(¢),
for every given ¢, then the value t* can be computed by either of the following
methods:

2.1. METHOD A

Let 7, be a lower bound for *. Solve PP(z,) until a solution x' is obtained such
that h(x')/g(x") > t,. Reset t, <—t, =h(x'/g(x") and repeat. Terminate when for
some k we have F(t,) <eat,.

Theoretically, this generated sequence ¢,,f,,... may be infinite. To preclude
such event it suffices, after every finitely many iterations, to reset # only when
a solution x is obtained such that &(x) —rg(x) > eat, i.e. such that h(x)/g(x) >
(1+&-%)t.

g(x)

2.2. METHOD B

Suppose an interval [#,,]'] can easily be determined that contains ¢* (i.e. such
that F(t,) >0> F(I')). Then a popular method for computing #* is to start from
this interval and iteratively reduce it by a Bolzano type procedure. Specifically,
assuming X %@ we can proceed as follows:

0. Set t,=0, t,=T.

1. If ¢, —t, < &t, terminate. Otherwise, solve PP(¢) for t=(t,+1,)/2.

2. If F(r)>0 and h(x")—tg(x") >0 for some x' € X then reset t, =h(x")/g(x"),
and go back to Step 1.

3. If F(r) <O then reset 7, =t and go back to Step 1.

4. If |F(t)| < eat then terminate.

PROPOSITION 3. If the above scheme terminates at a step 1 then t, is an
g-optimal value, with x" as e-optimal solution. If it terminates at a step 4 then t
is an g-optimal value and x' € X such that |h(x") —tg(x")| < eat is an 2e-optimal
solution.

Proof. By induction on the iteration counter it can easily be shown that F(¢,) >
0> F(t,) at every iteration. Since by Proposition 2 the optimal value #* of (FP) is
a zero of the decreasing convex function F(¢), one must have 7, <t*<1,, hence,
if the scheme terminates at step 1, t* is an g-optimal solution of (FP). If the
scheme terminates at a step 4, i.e. |F(t)| < eat, then the conclusion follows from
Proposition 2. g
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To make the above conceptual scheme implementable, we must develop an
iterative algorithm for solving PP(¢) such that:

(i) Each iteration k of the algorithm produces an interval [L,(¢), U,(¢)] enclosing
F(t) and satisfying U, (t) —L,(t) — 0 as k — +oo0.

(i) At each iteration an x*' € X is available for which h(x*")—rg(x*")=L,(1).
When incorporated into the above scheme for solving (FP) such an algorithm
will necessarily terminate after finitely many iterations by one of the following
situations which correspond to steps 2, 3, 4, respectively:

(a) L, (¢)>0:S then F(1)>0.
(b) U,(t) <0: then F(r)<O0.
(c) U(t)—L,(t)<eat: then |F(1)|<eat.

(Indeed, if neither a) nor b) occurs then U, (1) >0>L,(¢) and since L,(t)<
F(t)<U,/(t) and 0€[L,(1),U,(1)] it follows that |F(z)| < eat.)

However, especially when X is nonconvex, an algorithm for PP(7) with the
mentioned properties is not always easy to construct. More often an algorithm
only produces at each iteration k an upper bound U, (z) for F(t) such that
U,(t)—F(t)— 0 as k— oo. In such cases the scheme for solving (FP) should be
modified as follows.

0. Set t,=0, t,=T.

1. If 1, —t, < et, terminate.
Otherwise, solve PP(¢) for t=(t,+1,)/2.

2. If h(x")—1g(x") >0 for some x' € X then reset t, =h(x")/g(x"), and go back
to Step 1.

3. If U,(t) < eat then reset t,=1¢ and go back to Step 1.
(In the latter case g(x)—th(x) < U, () <eatr VYxeX, hence r*<(1+¢)t).

Remark 1. Method B is practical only when the sign of F(¢) for every ¢ can
be determined at relatively low cost. For instance, in a problem studied by
Gotoh and Konno [7], where both functions %i(x),g(x) are quadratic convex,
the computational cost of determining the sign of F(f) very much depends
on the nonconvexity rank of A(x)—rg(x), which in turn depends on the value
of t. The efficiency of the method is then very sensitive to the choice of the
sequence {f,} approaching t*. By exploiting the quadratic structure of A(x) and
g(x) of [7] the authors have been able to devise a procedure for determining an
efficient sequence {z,}.

Remark 2. The two above approaches for solving the fractional programming
problem (FP): via the polynomial program (PFP) in R"*! (the direct approach)
and via a connected sequence of polynomial programs PP(7) in R” (the parametric
approach) are closely related to each other. In fact, an alternative polynomial
program equivalent to (FP) is the following

max{z|rg(x) <h(x),xeX}. (2)
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Since the constraint of this problem can be expressed as
max{h(x)—rg(x)|xeX}>0

we see that the second approach merely amounts to solving the polynomial
program (2) equivalent to (FP). Upon the change of variables r=yh(x) (PFP)
becomes identical to (2).

3. Monotonic Reformulation

It was shown in [25] that any polynomial program can be converted into a
monotonic optimization problem. In this section we follow this method to refor-
mulate (PFP) or (PP(¢) as a problem of maximizing a monotonic function under
monotonic constraints. Let us first introduce some notations and definitions.

For any two vectors x’, x € R" write x’ > x and say that x" dominates x if x, > x;
Vi=1,...,n. Write x’ > x and say that x’ strictly dominates x if x. > x; Vi=1, ..., n.
Let R} ={xeR"[x>0} and R’} , ={xeR"|x>0}. For xeR’, let I(x)={i|x;=
0} and denote

K.={x"eR}| x;>x; VigI(x)}, clK,={x"eR}|x'>x}. (3)

If a<b we define the box [a,b] to be the set of all x such that a<<x<b. Also
write (a,b]:={x|a<x<b},[a,b):={x|a<x<b}. As usual e is the vector of
all ones and ¢’ the ith unit vector of the space under consideration, i.e. the vector
whose ith component equals 1, and all other components equal zero.

A function f: R" — R is said to be increasing on a a box [a,b]CR" if f(x) <
f(x") whenever a<x<x'<b. It is said to be d.m. (difference monotonic) on
[a,b] CR" if it can be represented as the difference of two increasing functions
on [a,b].

PROPOSITION 4. Any polynomial Q(x,,...,x,) (in particular any affine or
quadratic function) is a d.m. function on any box [a,b]CR'.

Proof. By grouping separately the terms with positive coefficients and those
with negative coefficients, one can write Q(x)=0"(x)—Q (x), where each
Q",0 is a polynomial with nonnegative coefficients, hence an increasing
function, on [a,b]CR’. In the case of a linear function Q(x)={(c,x), we
can write c=c"—c¢~ with ¢;"=max{0,¢,},c; =max{0,—c,}, so that Q" (x)=

(ct,x), 0" (x)={c,x). O
Consider now the general polynomial program

max{Q(x)|c¢;(x) <0, i=1,...,m, 0<x<r} (PP)
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where Q(x),c,(x),...,c, (x) are polynomials in R". Let Q(x)=Q*"(x)— Q0 (x),
c;(x)=c(x)—c; (x) be the d.m. representations of Q(x), ¢;(x) as described in
the proof of Proposition 4. Then the problem can be rewritten as

max Q" (x)+uw, 4)
st. w+0 (x)<0 (5)
¢;(x)<0, i=1,...,m, (6)
0<x<r, =0 (n<w,<—0(0) (7)

To see the equivalence between (PP) and the above problem, just observe that
any optimal solution (x,w,) of the latter must satisfy (5) as equality, hence must
solve (PP). Note that, since O~ (x) is increasing, —Q~ (r) < —0Q (0) <0.

It remains to convert the inequalities (6) into monotonic ones. For that we
replace the system (6) by the equivalent single inequality

max ¢ (x) ¢ (1)] <O,

=1,..,

then using the formula max,;(¥; —v;) =max}_;u; —min(}_;;u; +v;), we rewrite
this inequality as

u(x)—v(x) <0 (8)

where u(x),v(x) are increasing functions defined by

.....

v(x)=Y c¢f () +c¢ (x) (i=1,...,m). 9)

ki
In turn the d.m. inequality u(x)—v(x) <0 is equivalent to the monotonic system:
u(x)+w, <0, v(x)4+w, =20, —u(r)<w,<—u(0).

Now, setting z= (X»Zn+1 ’Zn+2) eR"xR?, with zi=x; (i=1, -“7”)’Zn+] =w,
2,42 =Ww, let us define the functions

f@)=0"(x)+2,44 (10)
¢(z)=max{z,,; + 0 (x), u(x)+2,,} (11)
P(2) =v(x) +2,1 (12)

These functions are increasing in the interval [a,b] C R"*? with

a=(0,...,.—0~(r),—u(r)), b=(r,—Q7(0),—u(0)). (13)
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Furthermore, f(z) is a polynomial with nonnegative coefficients, ¢(z) is
the pointwise maximum of two such polynomials while i/(z) is the pointwise
minimum of at most m such polynomials. We have thus proved the following

PROPOSITION 5. Any polynomial program (PP) can be rewritten as a mono-
tonic optimization problem of the form

max{f(z)|¢(z) SOSP(2), 2=(%,2,4152,12) €[a. ]} (MP)
where f(z),¢(z),¥(z) are increasing. More precisely, if x solves (PP) then
2=(X, 2,415 2pp1) With Z,,, =—Q7(X), Z,,,=—u(x), solves (MP). Conversely, if

2=(%,Z,41,2,42) solves (MP), then x solves (PP).

As immediate consequence of this Proposition it follows that

(i) If ¢(b) <O<Y(b) then b is an optimal solution of (PP);
(i1) If ¢(a)>0 or (b) <O then (PP) is infeasible.

Therefore it only remains to consider the case when
¢(a)<O<e@(b); ¢(b)=0. (14)

Remark 3. Since ¢(b)=max{—Q (0)+Q (r), u(r)—u(0)}, y(b)=v(r)—
u(0), case (i) means that QO (r)=0 (0),u(r)=u(0),v(r) Zu(0)=u(r), i.e.
Q(x) is increasing on [0,r] while r is feasible (u(r)<v(r)), which obvi-
ously implies that r is an optimal solution. On the other hand, since ¢(a)=
max{—Q~ (r)+ 07 (0), u(0)—u(r)},¥(b)=v(r)—u(0), case (ii) means that
u(x)—v(x)=>u(0)—v(r)>0 Vxe[0,r], i.e. no point x€[0,r] is feasible. The
assumption (14) simply means that these trivial cases are excluded.

Also note that if Q(x) is increasing (Q~(x)=0) then the variable z,., =w, is
not needed. Likewise, if u(x)—v(x) is monotonic (v(x)=0 or u(x)=0) then the
variable z,., is not needed.

4. Polyblock Approximation Method

In this and the next sections we apply the polyblock approximation method as
developed in [25] (and revised in [26]) to solve the problem (MP), equivalent to
(PP). For notational convenience we set £{ =n-+2.

It should be noted that this method, in some of its basic components, was
put forward first in some works of Kuno-Yajima-Konno and especially in [12]
for solving certain classes of problems related to multiplicative programming.
Subsequently, though independently, it was developed in [15] for more general
classes of problems, then streamlined and extended to the whole range of mono-
tonic optimization in [25] (see also [8, 27] for the application to some special
problems).
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4.1. NORMAL SETS AND POLYBLOCKS
Define the sets
G={zeR'¢(2)<0, a<z<b},
H={zeR"|y(z)>0}.
These sets are characterized by the following important property
[a<z' <z<b, 76G]=7 €G, (15)
[a<Z'<z<b, z¢H|=7¢H. (16)

A set G with property (15) is called a normal set in [a,b], while a set H with
property (16) is called a reverse normal set in [a,b]. Thus the problem (MP) is
to find

max{f(z)|ze GNH}, (17)

where G is a compact normal set, H a compact reverse normal set in [a, b]. In
view of the assumption (14) we have

acintG\H, beintH\G. (18)

As a result, for any point z=(x,x,,,,w) €[a, b] there is a unique point, 7;(z)
on the halfline from a through z defined by

7(z)=a+Ags(z—a), A;=max{A>0]|a+A(z—a)eG} (19)

This point 7;(z) can be determined without difficulty, provided the value of ¢(z)
at every given z is given or can be computed easily. Indeed, since ¢(a) <0< ¢(z),
and the function A~ ¢(a+A(z—a)) is increasing, using a Bolzano binary search
on the segment [0, 1] one can locate the A € (0, 1) satisfying ¢(a+A(z—a))=0.
Specifically, from (11) we have ¢(z) =max{¢,(z),¢,(z)}, with

P1(2) =2, +0Q (x) =0 (1), (20)
@2(2) =u(x) + 2,40 —u(r). 21

PROPOSITION 6. Let A,, A,, be the roots (in the interval (0, 1)) of the polyno-
mial equations of one variable

¢ (a+A(z—a))=0, ¢@,(a+A(z—a))=0,
respectively. Then
AG =min{/\1, /\2}

Proof. Immediate. In particular if Q~(x) and ¢/ (x),...,c](x) are quadratic
then A,, A, are obtained by solving quadratic equations of one variable. O
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4.2. POLYBLOCKS AND APPROXIMATION OF NORMAL SETS

A set P C R’ is called a polyblock in [a,b] if it is the union of a finite number of
boxes [a,z], ze T Cla,b] (|T| <+o0). The set T is called the vertex set of the
polyblock. We write T =vertP and also say that the polyblock P is generated by
T. A vertex zeT is said to be proper if it is not dominated by any other 7' €T,
ie.if z¢&[a,z'] VZ € T\ {z}. A vertex which is not proper is said to be improper.
Of course a polyblock is fully determined by its proper vertices. We denote the
set of proper vertices of P by pvert(P). The proof of the next Proposition 7 can
be found in [25] (or [24]) and that of Proposition 8 in [26].

PROPOSITION 7. Any polyblock is closed and normal. The intersection of
finitely many polyblocks is a polyblock. An increasing function f(z) achieves its
maximum over a polyblock at a proper vertex.

PROPOSITION 8. Let G be a compact normal set in [a,b] CR, let P be a
polyblock in [a,b] containing G, with pvertP=V. Let z* € V\ G, z=m;(z*) and
V.={z€V|z=1z}. For every z€V define

=z (z;—7z)e', i=1,...,L (22)
Then the vertex set of the polyblock P\ (Z,b] is

V' =(V\V)U{Z|zeV,, z,>7;, i=1,...,¢},

while its proper vertex is obtained from V' by removing every 7' for which there
exists 7' €V, such that z; > z; but z; # 2} ¥ j#i (i.e. i is the unique index satisfying
2> 7).

4.3. POLYBLOCK ALGORITHM

Based on the above properties an outer approximation procedure can be developed
for solving the problem (MP), or equivalently, the problem (PP).

Let vy be the optimal value of (MP). An g-optimal solution of (MP) is a feasible
solution z of (MP) such that y<(1+¢€)f(Z). To find an g-optimal solution of
(MP) by the polyblock outer approximation method we construct inductively a
sequence of polyblocks P, D P, D--- D GNH together with a sequence of vectors
?eGNH (k=1,2,...), such that f(z')<f(z*)<--- and

max{f(z)|z€ P} —f(Z*)\O (k— o0).

The procedure will be stopped when
max{f(2)|z€ P} < (1+2)f (), (23)

because this will imply that y< (1+¢)f(z*), hence z* is e-optimal.
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As initial polyblock we take P, =[a, b] with proper vertex set T, ={b}.

At iteration k we have a polyblock P, with proper vertex set 7, and a vector
Z¥ which is the best feasible solution known so far (it may happen, however, that
no feasible solution has been known yet, in this case we set f(z¥)=—o0). Then
we check the condition (23). Observe first that every vertex z€T,\ H can be
discarded, since for these z we have [a,z]NH =, and hence, [a,z]|N(GNH)=0.
Also if f(z¥)=—oo then condition (23) is not fulfilled. If, on the other hand, z*
exists so that f(z¥) > —oo, then we have to check whether f(z) <(1+¢)f(Z¥)
for every z € T}, or rather, for every ze T,NH.

Let T, be the set of all ze T,NH such that f(z)> (1+¢&)f(Z*) (i.e. the set
that remains from 7, after removing all z€ T, \ H and all z€ T} such that f(z)
<(14€)f(z")). Then the polyblock P, of vertex set 7, contains all feasible
points z still of interest. If 7, =, this means that f(z) <(1+¢)f(z*) for every
feasible solution z, hence condition (23) holds, so the procedure can be stopped:
if a 7% exists it is an g-optimal solution, otherwise the problem is infeasible.

If T, #0, let

2" cargmax{f (z)|z€ T, } =argmax{f (z) |z € F}.

(see Proposition 7) and let ¥ =7, (z") be the point computed according to (19)
and Proposition 6. At this point we note the particular role of the variable z,,,; =w,
which, for any given choice of x, should be maximized while satisfying the
inequality z,,, + P~ (x) <O (see (5)). Therefore, if z* is such that Z%_ + P~ (¥*) <
0 then by increasing z* | to X, =—P~(%*) we improve the objective function
value without violating any constraint. Thus, in any case we can replace z* by
=282 ) where ** =32 =—P~ (&%), and Z},,=2}_,. In the sequel
it will be convenient to denote this vector z* by 77(z*). Since z* € G, if z* € H then
z¥ is feasible and can be used to update CBV. If, in addition, (1+¢)f(z*) > (%)
then, since f(z*) >+, we have (1+¢&)f(Z*) >, so z* is an e-optimal solution of
the problem and the procedure terminates (this occurs in particular if z* =2z*). On
the other hand, if z*#z*, then z* ¢ G and using Proposition 8 we can compute
the proper vertex set 7, , of the polyblock P, = P\ (Z%,b]. Specifically, letting

T..={zeT|z>7"}, Zi=z—(z,—Z,)e' (i=1,...,£) define the set
Ve =(T\T) V{2 €Tn 2> 2} (24)
and let T, be the set that remains from V, ., after removing every z' for which

there exists z' € T, satisfying {i}={j|z;>z}}.
We can thus state the following Polyblock Algorithm for problem (MP).

ALGORITHM 1 (for (MP) with tolerance & > 0).
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4.3.1. Initialization

Set T,={b}. Let 7' be the best feasible solution available, CBV = f(z!). If no
feasible solution is available, let CBV =—o0. Set k=1.

Step 1. From T, remove all z€ T, such that z¢H and all z such that f(z) <
(14)CBV. Let T, be the set of remaining elements of 7.

Step 2. If Tkzﬂ, terminate: if CBV = —oo, the problem is infeasible; if CBV >
— o0, the current best feasible solution z* is an e-optimal solution of (MP).

Step 3. If T, #8, select z* e argmax{f(z)|z€T,}. Compute z*=m;(z*)=\,7",
and z* =7 (Z").

(3a) If ¢(z¥) >0 (so that z¥) is feasible and f(z*<(1+¢)f(Z*) then
terminate: Z* is an g-optimal solution.
(3b) If (z*) >0 and f(z*) > CBV then reset CBS=z*,CBV = f(z").

Step 4. Compute V,_, according to (24) and let T}, be the set that remains from
V., after removing all improper elements as indicated in Proposition 4.
Step 5. Set k <—k+1 and return to Step 1.

THEOREM 1. The above Algorithm is finite provided for some & >0

rrllinz(zi—ai) >86 VzeH. (25)

Proof. This follows from a general convergence theorem established in [25].
Although Algorithm 1 involves a modification of the standard Polyblock Outer
Approximation Algorithm in [25] to take account of the particular role of y
(replacement of y* by $* in Step 3), the convergence proof given in [25] is still
valid with some minor and obvious modifications. g

Condition (25) can easily be made to hold by slightly moving the origin if
necessary.

5. Discussion

1. To avoid storage problems in connection with the growth of the set 7, as
the algorithm proceeds, and also to preclude possible jams, it may be useful to
restart the algorithm whenever |7,| > L, where L is a user supplied fixed number.
Specifically, Step 5 of Algorithm 1 should be modified as follows. Let Z be the
point where we would like to restart the Algorithm (usually, Z=z* or current best
solution).

Step 5. If |T,,,| <L then set k <—k+1 and return to Step 1. Otherwise go to
Step 6.

Step 6. Redefine z8=7;(2), T, ,={b—(b;—2z")e', i=1,...,¢}, (ie. P =
[a,b]\ (z*,b), then set k < k~+1 and return to Step 1.
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with this modification, an occurence of Step 6 means a restart, i.e. the beginning
of a new cycle of iterations.

2. The performance of the algorithm is sensitive to the size of the box [a, b], or
rather the size of the set [a,b]\ GNH because the search procedure is carried out
in this region. Moreover, it has been observed that the performance depends also
on how fast the quantity (1—A,)||z*| tends to zero, where z* € H, and min, z¥ > &
(see (25)). Therefore, before starting the algorithm, it may be useful to try to
reduce the box [a, b] if possible and to select a suitable value of §. This can be
achieved by the following box reduction operation. Denote the box that results
from the reduction of the box [a,b] by Red [a, b].

Box Reduction Procedure. Compute

4
o;=sup{oc>0|a+0e'€G, a;+0<b;}, D=a+) oe (26)
i=1

4
0;=sup{0>0|b'—6e' €H, a,<b,—0}, a'=b - 0" (27)
i=1

Then Red [a,b]=[d’,]'].

If (a’)>0 or (') <0, then (MP) is infeasible.

If o(b')<O<LY(b'), then b’ solves (MP).

If o(a’) <O<Y(b'), we can either further reduce [a’,b'] (if @’ > a) or stop the
reduction process and reset b<—b', a<—a' —06,(b'—a’) where 6,>0 is chosen
so that ¢(a’'—d,(b'—a’) <0.

3. In some problems it may happen that the initial rectangle [a, b] is very thin,
so that the selection rule for z* in Step 3 favours certain search directions which
may not be promising. One way to avoid such unpleasant situations is to rescale
the variables in order to obtain a more balanced initial box.

Also it may happen that the objective function does not depend upon certain
variables x;,i¢J. In that case, with 7, defined as in Algorithm 1, the value
max{f(z)|ze€T,} in Step 3 will remain constant through a large number of itera-
tions, causing a possible stall of the algorithm. To avoid such kind of difficulty,
one should consider the problem in R (space of (z,,...,z,,)), rather than in R".
More precisely, the feasible set over which one should maximize the objective
function is the set of all (z,...,z,,) for which there exists z;,,,,...,2, such that
@(z1,..,2) SOLY (24,05 20), 2=(24,...,2,) €[a, b].

4. Polynomial programs involving only polynomials with nonnegative coeffi-
cients are in general much easier to handle than those with polynomials having
both positive and negative coefficients. Quite often the convergence of Algorithm
1 for problems of the latter category is very slow due to the peculiar role of the
variable z,, in the expression f(z)=P*(x)+z,,,. In fact every fixed value of
2,41 gives rise to a monotonic problem whose optimal value is a highly non-
linear non-monotone function of z, ;. To overcome difficulties which may arise
from this, in the next section we will propose a branch and bound algorithm
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(Algorithm 2) using an efficient bounding method based on a truncated version
of Algorithm 1.

5. An equality constraint can in principle be handled by replacing it with two
opposite inequality constraints, as usual. However it is often more efficient to
use the equality constraints to eliminate one or more variables, so as to reduce
the problem to one with less variables and only inequality constraints. Also note
that sometimes an equality constraint can actually be replaced by one inequality
constraint without changing the set of optimal solutions.

6. A common feature of many deterministic global optimization algorithms is
that the optimal solution may be found rather fast, while most of the computa-
tion time (sometimes more than 80%) is spent on verifying (confirming) global
optimality. This is one aspect of the inherent difficulty of global optimization. In
particular, solving PP(7) to improve a current best value ¢ of (FP) when ¢ is not
yet optimal usually takes much less time than solving it to check optimality when
t is already optimal or nearly optimal. Fortunately, at each stage of the algorithm
an upper bound of the optimal value is available as well as a current best value,
so one knows how far the current best value is from the optimum. This is a very
useful information rarely provided by local or nondeterministic methods.

6. Branch and Bound Method

The polyblock approximation algorithm has proved to work well on a number of
difficult nonconvex problems [8, 15, 27]. However, since it is essentially an outer
approximation procedure, it is expected to encounter storage problems and other
difficulties inherent to procedures of this kind when solving large scale problems.
To alleviate these difficulties, one way is to use the polyblock approximation
not as an independent outer approximation algorithm, but, instead, as a bounding
technique in a well suited branch and bound scheme. In fact, given any box
M :=[p,q]C[0,r]CR’, an upper bound for

V(M) :=max{P(x)|c;(x) <O (i=1,...,m), p<x<q} (PP[p,q])

can be obtained by means of one or a few iterations of Algorithm 1 applied to
the monotonic problem

max{f(z)|ze GNH, p<z<q) (MP[p, q])

equivalent to PP([p,¢]). In many cases, even tighter bounds can be derived
by exploiting the monotonic structure combined with the d.c. structure of the
subproblem (MP][p, ¢]). Incorporating this bounding technique into a rectangular
partitioning scheme will produce a branch and bound method for solving (PP)
which is often much more efficient than Algorithm 1.

Let us first describe the procedure for computing an upper bound for (PP[p, q]),
i.e. a number B(M)>=vy(M):=max{P(x)|c;(x)<0 (i=1,...,m),p<x<q},
where M :=[p, q] is any subbox of [0, r].
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6.1. BOUNDING SUBROUTINE
Let us rewrite the polynomial program (PP([p, ¢]) in the form:

max{P"(x)— P~ (x)|u(x)—v(x)<0, p<x<q}

where P(x)=P"(x)—P~(x) and u(x),v(x) are increasing functions defined by
(9). As shown in Section 3, this problem can be reformulated as

max{f(z)[¢(z) SO Y(2), z2=(x,2,11,2412) €[P. 41} (MP[p. q])
where

f@)=P (X) 42,13 (28)

e(z)=max{z,, + P (x), u(x)+z,..} P(2)=v(x)+2,523 (29)

pi=pi i=l,on, poa=—P7(q), Poa=—u(q); (30)

4=4q; i=1,....n, G, =—P(p), quo=—u(p). (31)

PROPOSITION 9. (1) If ¢(q)<0<¥(q), then g is an optimal solution of

PP[p.ql, i.e. B(M)=~(M)=P(q);
(2) If ¢(p) >0 or Y(q) <0 then y(M)=—o0 (no feasible point in M).

Proof. This follows from the equivalence between PP[p, ¢] and MP[p, ¢] (cases
(i) and (ii) considered at the end of Section 3). Note that ¢(¢) <0=—P (p)+
P~ (q)<0=P (p)=P (g), and since g solves MP|p, ¢] it follows that y(M) =

f(@=PT(q)—P (p)=P(q). O

Let us now agree to call bounding function any function F(p,q) defined for
every box [p,q]C|[0,r] such that F(p,q) e RU{—o0}, F(p,q)>vy(M) and

F(p",q")—y(M,)—0 as v— Hoo. (32)
for any nested sequence {M, =[p",q"]} satisfying ¢" — p’ — 0 (v — o).
PROPOSITION 10. The function

Fp.q)= { I:Eq) —P~(p) Z;e(rli)i§0< ¥(q)

is a bounding function.

Proof. That F(p,q)>vy(M) is obvious by Proposition 9. Consider any infinite
nested sequence {M,=[p”,q"]} such that g" —p”— 0. Then g}, , —p.. =P (q")
—P~(p")—0andgq),,—p,. ,=u(q")—u(p”)— 0as v— oo. Hence ¢" — p” — 0,
so p” and ¢” tend to a common limit 7€ R"** as v — co. Let x=(Z,,...,2,) € R".
If for some v we have ¢(p”) >0 (or ¥(g") <0, respectively) then for all u>v,
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since [p*, "] C[p".¢"], it follows that ¢(p*) = ¢(p”) >0 (or ¥(¢*) <¥(g") <0,
respectively), hence F(p*, g") = —oo, whereas by Proposition 9 y(M,,) = —o0, so
that (32) holds. On the other hand, if ¢(p”) <0< (g") Yv then ¢(2) <0< Y(2),
hence max{f(z)|¢(z) SO<¥(z2).z€[p". 4"} =v(M,) > f(2) =P(x), whereas
F(p",q")=P*(¢")— P (p”") — P(x). Therefore, (32) holds in any case. O

Clearly, if {F;(p,q).i€l} is a finite family of bounding functions then their
lower envelope F(p,q)=min{F,(p,q)|i 1} is also a bounding function. We can
now state the following bounding subroutine.

Select a bounding function F(p,q) which may be obtained via any simple
bounding method available. For instance, when MP[p, ¢q] happens to be also a
d.c. optimization problem then F(p,q) may be computed by solving a convex
relaxation of the latter. In any case one can take F(p,q)=P*(q)— P~ (p). Select
also an integer L (the maximal number of iterations of Algorithm 1 we are willing
to execute in the subroutine).

Bounding Subroutine (for PP[p, ¢])

Step 0. Compute p,q according to (30), (31). If ¢(p)>0 or ¥(g) <0 then
set B(M)=—o0, y(M)=@ and terminate. If ¢(g) <0< (q) then set
B(M)=P(q), y(M)=gq and terminate (P(g)=vy(M)). Otherwise, go to
Step 1.

Step 1. (Box reducing). Compute B;=sup{B>0|¢(p+Be)<0, p,+B<¢g,} for
every i=1,...,n+2, and let c}’:ﬁ—l—zl’.zjﬁie". Then compute «;=
sup{a>0|(§ —ae') >0, p,<g —a} for every i=1,...,n+2, and let
F=q -y e
Reset p (}seves 7)), < (d]s-2 ).

Step 2. Compute p,q according to (30), (31). If ¢(p)>0 or (g) <0 then
set B(M)=—o0, y(M)=9 and terminate. If ¢(q)<0<¢(g) then set
B(M)=P(G), y(M)=q and terminate. Otherwise, let z'=¢g, T,=W,=
{z'}, 7' =m;(z") (intersection of the surface ¢(z) =0 with the segment
joining p and z'=g; this intersection exists because ¢(p)<0<¢@(q)).
Set v=1 (v: iteration counter for subroutine) and go to Step 3.

Step 3. Compute

=g~ (g —m)e, i=l.n

Let T, = (W \{z"hUfz"!,....2""}.
Step 4. Let W, be the collection of all ze T, N H such that thereisno 2’ €T, ,
satisfying 7’ #z,z' >z (i.e. z is a proper element of 7,,,). If W, =0,

set B(M)=—o0 and terminate. Otherwise, compute
2 eargmax{F (p,2)|z€ W, }.

where F(p,z) =min{F(p,z), f(z)}, and let 7' =m;(z"*").
Step 5. If v=L, set B(M)=F(p,z"™"), z(M)=z""',y(M) =7"*" and terminate.
Otherwise, set ¥ <—v+1 and return to Step 3.
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A subdivision procedure in R” is said to be exhaustive (see [9]) if ¢"—p”— 0
for any infinite filter of rectangles [p”,q”] CR" generated by this subdivision
procedure.

PROPOSITION 11. The bound computed by the above subroutine is consistent
with any exhaustive subdivision procedure.

Proof. This is a straightforward consequence of the properties of the bounding
function. g

6.2. BRANCH AND BOUND ALGORITHM

Given a box M =|[p,q] CR" and a couple (w, j) where we M, je{1,...,n}, the
collection {M,, M,} is called a partition of M via (w, j) (see [6, 23]) if

M ={zeM|p;<z;<w;}, My={zeM|w;<z;<q;}.

When w= 24, and jeargmax,_, _,(g,—p;) the partition via (w, j) is called a
bisection. As is well known, the subdivision procedure by bisection is exhaustive

(see e.g. [23]).

.....

ALGORITHM 2 (for (PP) with tolerance & > 0).

6.2.1. Initialization

Let x° be the best feasible solution available of (PP), CBV = P(x°). If no feasible
solution is available, let CBV = —o0. Set P,=8,={M,:=[0,r]},k=1.

Step 1. (Bounding) For each rectangle M =[p, q] € P, compute B(M), z(M) and
y(M) using Bounding Subroutine. If y(M) is feasible to (PP), then let
x* e argmax{P(x*~D), P(y(M)) (M €P,)} and reset CBV = P(x¥).

Step 2. (Pruning) Delete every M €S, such that B(M) > (14+¢)CBV. Let R, be
the collection of remaining members of S,.

Step 3. (Termination Criterion) If R, = then terminate: x* (current incumbent)
is a global e-optimal solution of Problem (PP).

Step 4. (Branching) Select M, € argmax{B(M)|M € R,}. Bisect M, and let P,
be its partition.

Step 5. (New Net) Set S, = (R, \{M;}) UP,,.

Set k <—k+1 and go back to Step 1.

PROPOSITION 12. Algorithm 2 terminates after finitely many iterations, yield-
ing an g-optimal solution.

Proof. Since the subdivision is exhaustive while the bounding method is
consistent by Proposition 11, finiteness of the algorithm follows from the general

theory of branch and bound methods for nonconvex optimization problems (see
e.g. [23)). O
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Remark 4. In many cases the convergence of Algorithm 2 can be sped up
by using in Step 4 a more flexible subdivision than bisection. Specifically, we
subdivide M, via (o(M,), j,) where

(M) +y(M)

ji eargmax{z, (M)~ 3, (M), w(M) ="

This subdivision is often referred to as an adaptive subdivision. Finiteness of
the algorithm in that case can be proved as follows. Suppose the algorithm is
infinite and let {M,:=[p”,q"],v=1,2,...} be any filter of boxes generated by
the algorithm, with z"'=2z(M,), y'=y(M,), o’ =w(M,). Without loss of gene-
rality we can assume that j,=1 Vv and ¢*— ¢, p”— p, while "/ — 2z, y"—
v, @ — @=(Z4+¥)/2. Then, by a known property of rectangular subdivision [23]
(Lemma 5.4, page 160) @, €{p,,q,}, hence z, =y,, and so z=y because 1 =},.
Since ¢(y")<0, (z") >0 it follows that ¢(y) <O<#(y). On the other hand,
F(p",z2")=B(M,)>~vy:=max{P(x)|u(x)—v(x)<0,0<x<r}, hence F(p,2)
= P(y) =". This implies that for v large enough one must have 8(M,) > (1+¢)
CBV, so R,={ and the termination criterion in Step 3 would have been met at
this iteration, contradicting the assumption. (]

Remark 5. There is an obvious trade-off between the maximal iteration number
L allowed for the subroutine and the convergence speed of the BB algorithm. It
seems reasonable to take L sufficienttly large at the first stage of the BB (within a
few iterations) and subsequently take L < 5. For many problems even the standard
bisection, along with L =1 for bound computation perform quite satisfactorily.

7. Illustrative Examples

To illustrate how the above presented method works we solved a number of
simple, but nontrivial, numerical examples. The experiments confirmed that Algo-
rithms 2 usually outperforms Algorithm 1 on polynomial programs even with a
small number of variables. Therefore, for fractional programs (FP), we always
used Algorithm 2 for solving (PFP) in the direct approach, or the subprob-
lems PP(t) in the parametric approach. The algorithms corresponding to the two
approaches were coded in C** and run on a PC Pentium IV 2.53 GHz.

Examples 1 and 2 below are test problems for univariate polynomial
programming taken from [3]. They have been solved very fast, as well as the
other test problems in Chapter 4 of [3] which are not reported here. Examples 3
and 4 are multivariate polynomial fractional programs. Example 5 features the
maximization of a sum of many ratios. Example 6 is a synomial fractional pro-
gram with linear constraints, while Example 7 is a synomial fractional program
with synomial constraints.
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EXAMPLE 1 (Test problem 1, Chapter 4, [3]).

1 52 39 71 79 1
min { 6 X+ x4+—x3——x2—x+—}
—2<x<11

6° 25 80" 107 20 10

By the change of variable x+2 =7z this problem becomes

min {0.166667z° —4.08z° 4+31.2875z* — 106.666667z> +171.55z> —

0<z<13

—114z+14.526667}

Algorithm 2, with tolerance 0.01, found the optimal solution z=11.999847,
i.e. x=9.999847, with objective function value: —29763.232229 at iteration
1106 and confirmed its optimality at iteration 1918 (note that each iteration in
Algorithm 2 is executed very fast). Computation time: 0.015 sec, maximal number
of nodes in each iteration: 12.

EXAMPLE 2 (Test problem 5, Chapter 4, [3]).

min  2x;—1 05x4—|—lx6—x X+ X
I e R e
(the three-hump camel-back function). Observe that if (x,, x,) is a feasible solution
then (|x,|, |x,|) is also a feasible solution, no worse than (x,, x,). Therefore, the
problem is the same as

1
: 2 4 6 2
ogfcrll,lxrzlgs {le —1.05x]+ ghi—ax +x }

Algorithm 2, with tolerance 0.01, found the optimal solution: x=(0,0) with
objective function value 0, right at the beginning (iteration 0) and confirmed its
optimality at iteration 3131. Computational time: 0.219 sec, maximal number of
nodes in each iteration: 697.

EXAMPLE 3.

max{@ c(x) <0, x}O}. (33)
8(x)

where
h(x) = 3.525x7 +1.95x,x, 4+ 1.95x,x; +3.25x, x, +0.825x; +6.5x,x; +
+1.0834x,x,+0.625x3 + 1.0834x;x, + 1.4027x; +19.7 —
—11.7x, —3.9x,—3.9x; — 6.5x,,
g(x) = 1.5x7+0.3x;+0.5x; +0.2x; +5,
c(x) = 1.5x,4+0.5x,+0.5x;4+5/6x, —3.
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The nonzero vertices of the constraint polytope X of (33) are
(2,0,0,0), (0,6,0,0), (0,0,6,0), (0,0,0,3.6)

so this polytope is contained in the box 0<x<r:=(2,6,6,3.6).
For fixed ¢ the problem PP(¢) is

max{h(x)—rg(x)|c(x)<0, 0<x<r}. (34)
The bounding subproblem for any box [p,¢]C[0,r] is
max ht(x)+s
st. s+h(x)+1g(x)<0
c(x)<0
p<x<q, —h(q)—1g(qg)<s<—h (p)—18(p).
With tolerance 0.01, the parametric approach found the optimal solution

x=1(0.000, 3.421875, 2.578125, 0.000)

with objective function value A(x)/g(x)=5.699282, in 1.625 sec, generating 4
subproblems PP(¢) (note that, each PP() is usually not solved to optimality); the
direct method found the same optimal solution in 1.313 sec, i.e. is only slightly
faster.

EXAMPLE 4.

mm{%

where

c(x)<0, x>0}

h(x) = h*(x)—h™ (x),

B (x) = 83, X, X5 X3 + 2, X5 X35 + 7 X7 x5 X3 X, X5 42, X5 x5 437 X530, X5 +

+ 67 35+ 9x;7 X5 %35 -+ 10x7 0,37 X5 +9x7 X5 X + 5 X3, x5

h™(x) = 8x3x3x3 +5x3 x5 +4xT x5 x4 + 7 X}, 30, x5 +4
g(x) = 3x, X335 4 22, X3, + 30700, X5 X5 3 + 3x] X, 03 x, x4 + 10
c(x) = x;+4x,+8x;4+10x,+8xs— 16

Initial box [0, 7], r=(16,4,2,1.6,2).
With tolerance 0.01, the parametric approach found the optimal solution:

x=1(9.5, 0, 0.40625, 0, 0.40625)
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with objective function value 84.498009, in 9.875 sec, generating 10 subproblems
PP(¢) (maximal number of nodes in each iteration: 1158); while the direct method
found the optimal solution x=(9.601563, 0, 0.399902, 0, 0.399902) with
objective function value 84.532589 in 46.578 sec, i.e. is much slower.

EXAMPLE 5.
N
k
max m_i_Z(_l)kﬂ, (35)
x+x+l 5 X, +x,+k
st x+x/2<l; % /2+x5<1, x,x,20, (36)

where N >2 is a natural number to be specified. Setting

N

g(x) = [[[x,+x+k], &) =]T{x +x+k k#i}

k=1 k=1
[N/2]
h+(x) =[x, +x,]g(x)+ Z [2ix; +x,]85(x)

i=1
[(N=1)/2]
h™(x) = Z [(2i+1)x1+x2]g2i+l(x)v

i=1
we see that these are polynomials of degree N in x;,x,, with nonnegative coef-
ficients. The equivalent problem (PFP) is
max yht(x)+s
st.  s+yh (x)<0
yg(x)—1<0
X H+x,/2—1<0; x,/2+x—1<0
0<x<r, 1/8(r)<y<1/g(0), —h™(r)/g(0)<s<—h"(0)/g(r),

where r=(1,1). Since h(x)<h*(q)—h (p), and g(x)=g(p) Vx€[p,q], an
upper bound for 2 over a box [p,q] is [A"(g)—h~(p)]/g(p).

8(¥)
e For N =7, with tolerance 0.01 the direct approach found the optimal solution

x; =0, x,=1

with objective function value h(x)/g(x)=0.634521 at iteration O and con-
firmed it at iteration 11824, in 6.11 sec (maximal number of nodes in each
iteration: 3578).

With tolerance 0.01 the parametric approach found the optimal solution

x;=0, x,=1
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with objective function value i(x)/g(x)=0.634521 in 22.438 sec, generating
2 subproblems PP(7) (maximal number of nodes in each iteration: 3446).
e For N =10, with tolerance 0.01 the direct approach found the optimal solution

x,=0.794813, x,=0.736547

with h(x)/g(x)=1.302486, at iteration 5330 and confirmed it at iteration
26917, in 65.359 sec (maximal number of nodes in each iteration: 9027).
With tolerance 0.01 the parametric approach found the optimal solution

x,=0.794813, x,=0.736547

with h(x)/g(x)=1.302486, in 130.281 sec, generating 6 subproblems PP(7)
(maximal number of nodes in each iteration: 9815).

The above example demonstrates the efficiency of our method for the
optimization of sums or products of linear functions when the number of vari-
ables is small compared to the number of sums or products. Also it suggests that
for problems of small dimension (typically, n <4) the direct method often outper-
forms the parametric method, though the situation may be reversed as n increases
(as shown by Example 4).

EXAMPLE 6 (Minimize a synomial fraction under linear constraints).

min{%

c(x)<0,x> 0}
where

h(x) = h*(x)=h"(x)
45 | 0 2/3 . 473 34 473 2 14 12 | 1 12
Bt (x) = 3x2x3 x4 9x 0,0y P 1) X 470 P o PP

2/5 12 1/2_3/5 2/3 1/2 2 3/4_4/5 32 2/5
1207 3,252 2,223 T2 4 20y w2 P 6 1 P 2+

3/4 2 3/4_4/5 174 3/4_1/3_2/5 1/4
+x1/ x§x3/ x4/ x§+3x1/ xz/ x3/ x4/ xs/ +7

A (%) = 83, x5 +8x,0 g x5 P x4+ 9x 2 a1

g(x) = i+ 85, xix) " +
ARV a2 4
c(x) = 10x; + 10x, +x;+2x,+7x5 — 10.
Initial box [0,7], r=(1,1,10,5,1.428571).
With tolerance 0.01 the parametric method found the optimal solution:

x=(0, 0.176514, 7.058105, 0, 0.168108)

with objective function value 104.446287, in 26.063 sec, generating 12 subprob-
lems PP(7) (maximal number of nodes in each iteration: 1841).
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EXAMPLE 7 (Maximize a synomial fraction under synomial constraints).
x§/4x2/2 Ax i“x%xiﬁ 2x1/2 1/3 }/3 ;/%xiﬂ

Maximize
4x|xyx, +2x,x; x4+5x3x;x;/2 a)

3/2 3/4

subject to
550 % ey a2 x5 < 24.474783
5x1x%/2+5x1/2x4+5x x,221.142136

41 1/2+2x1/2x3x4+3x x50 +5x, %) x)? > 43.656854

2 1/3 3/2.2/3 1/4
dxix, " x5 "X —I—x2x3x4 —4x,x,x5" x4 —

—2x2x3/4x4 x;”? —4x,”x3x2 <5.313708
3)63 3/4 3/4—1-3161/2162962/2 3—i—4x xgxi/z 4x2 1/2 l/2x4
—2x x4 > _2x x2x3—4x1 x xl/zxi/2<0
30 xd P 2 435, Py x5 P — 30 0 g ? < 71.882251

0<x <5 1.2<x,<5; 0<x,;<5; 0<x, <5,
With tolerance: 0.01, the parametric approach found the optimal solution:
x=(0, 1.2, 1.419764, 2.528262)

with objective function value 7.843075, in 2.219 sec, generating 4 subproblems
PP(¢) (maximal number of nodes in each iteration: 69).

8. Concluding Remarks

Polynomial (or more generally, synomial) fractional programs are among the
hardest global optimization problems. At the present state of knowledge any
deterministic algorithm can hardly solve large scale non specially structured
problems of this class. The method proposed in this paper is certainly not an
exception, even though it is quite practical for problems of reasonably small size.
However, as the first general approach it leaves much room for further improve-
ments and specialized adaptations to specific problems arising from practical
applications (for example problems of the form mentioned in the Introduction:
min{®(y)|y,= ZEX’XER” i=1,...,m} where ®(y) is an increasing function
in R? with n small and m fairly large). Especially, it seems to work quite well
when each of the functions i(x), g(x),c;(x) is a polynomial with coefficients of
the same sign (either all positive, or all negative), so that additional variables are
not needed. Also a positive feature worth noticing of the proposed method is that
it is easy to implement and often gives a good feasible solution rather fast.
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